Hereditary $QI$-rings

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Equality I = Qi in Buchsbaum Rings

Let A be a Noetherian local ring with the maximal ideal m and d = dim A. Let Q be a parameter ideal in A. Let I = Q : m. The problem of when the equality I = QI holds true is explored. When A is a Cohen-Macaulay ring, this problem was completely solved by A. Corso, C. Huneke, C. Polini, and W. Vasconcelos [CHV, CP, CPV], while nothing is known when A is not a Cohen-Macaulay ring. The present pu...

متن کامل

On n-coherent rings, n-hereditary rings and n-regular rings

We observe some new characterizations of $n$-presented modules. Using the concepts of $(n,0)$-injectivity and $(n,0)$-flatness of modules, we also present some characterizations of right $n$-coherent rings, right $n$-hereditary rings, and right $n$-regular rings.

متن کامل

Hereditary Noetherian Prime Rings

In the study of hereditary Noetherian rings, it is clear that hereditary Noetherian prime rings will play a central role (see, for example, [12]). Here we study the (two-sided) ideals of an hereditary Xoetherian prime ring and, as a consequence, ascertain the structure of factor rings and torsion modules. The torsion theory represents a generalization of similar results about Dedekind prime rin...

متن کامل

Gorenstein hereditary rings with respect to a semidualizing module

‎Let $C$ be a semidualizing module‎. ‎We first investigate the properties of‎ ‎finitely generated $G_C$-projective modules‎. ‎Then‎, ‎relative to $C$‎, ‎we introduce and study the rings over which‎ ‎every submodule of a projective (flat) module is $G_C$-projective (flat)‎, ‎which we call $C$-Gorenstein (semi)hereditary rings‎. ‎It is proved that every $C$-Gorenstein hereditary ring is both cohe...

متن کامل

The Equality I = Qi in Buchsbaum Rings with Multiplicity Two

Let A be a Buchsbaum local ring with the maximal ideal m and let e(A) denote the multiplicity of A. Let Q be a parameter ideal in A and put I = Q : m. Then the equality I = QI holds true, if e(A) = 2 and depth A > 0. The assertion is no longer true, unless e(A) = 2. Counterexamples are given.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Transactions of the American Mathematical Society

سال: 1974

ISSN: 0002-9947

DOI: 10.1090/s0002-9947-1974-0338075-x